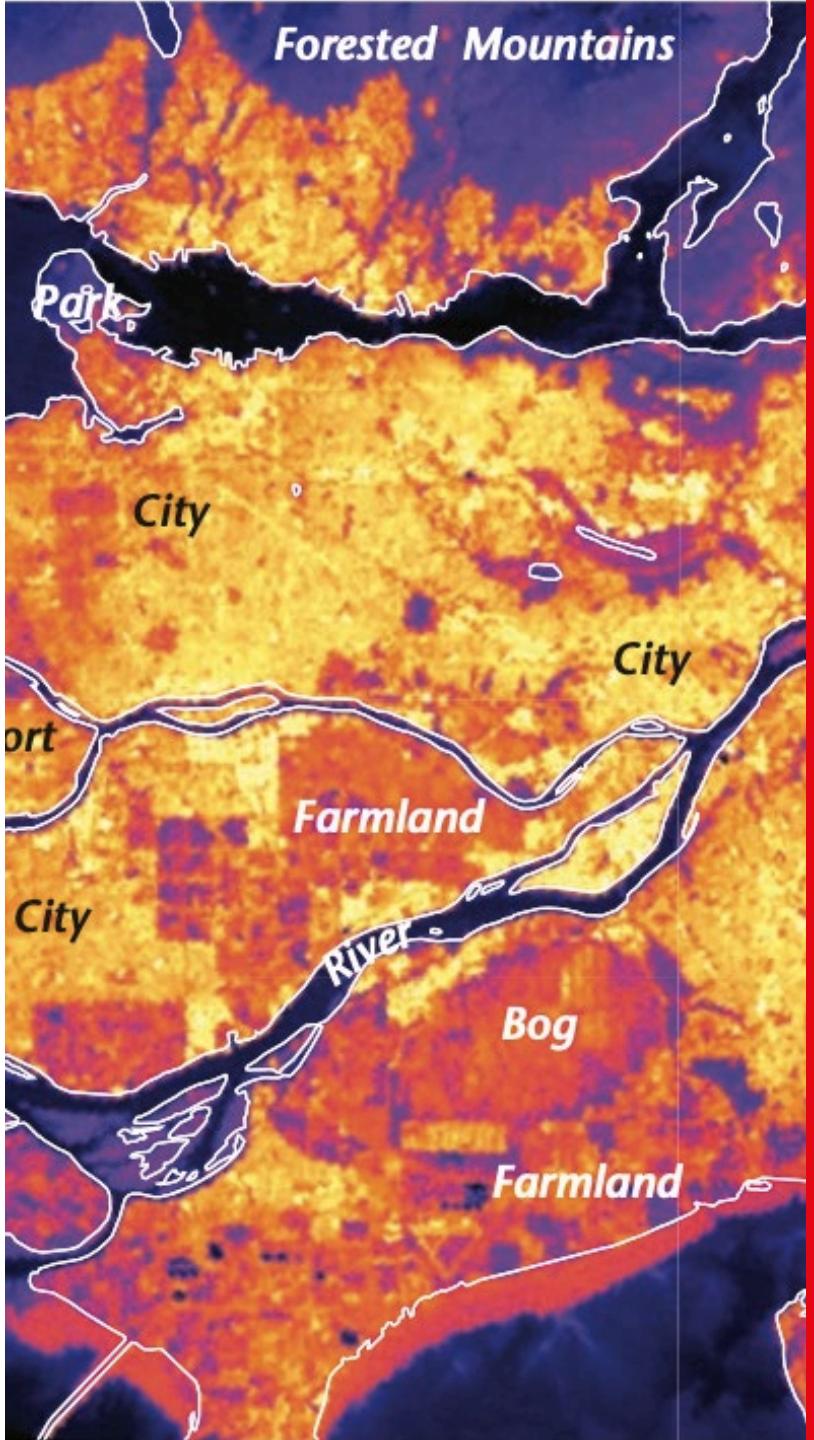


CIVIL-309: URBAN THERMODYNAMICS


**Assist. Prof.
Dolaana Khovalyg**

Lecture 04:
**Heat Transfer and Thermal Properties:
Convection and Evaporation**

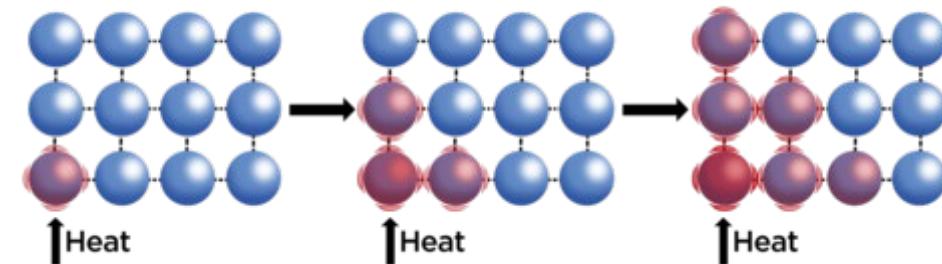
Lectures (L) 15:15-17:00, practice sessions (P) 17:15-18:00, room INJ218

Week	Date	Time	ID	Topics	Responsible
1	09.09	2 x 45'	L1	Course overview (content, evaluation, group project). Urban characteristics, Urban Heat Island (UHI) effect.	DK
			P1	Exercises based on materials in lecture L1	KL
2	16.09			No class (holiday)	
3	23.09	2 x 45'	L2	Overview of physical parameters . Urban environment and urban modeling.	DK, KL
			P2	Workshop on how to use the simulation tool ENVI-met (basic functions, geometry input, etc.) Exercises based on materials in lecture L2 [HW]	KL
4	30.09	2 x 45'	L3	Heat Transfer : Conduction and radiation	DK
			P3	Exercises based on materials in lecture L3	KL
5	07.10	2 x 45'	L4	Heat Transfer : Convection and evaporation	DK
			P4	Exercises based on materials in lecture L4	KL
6	14.10	90'	Q	Quiz (open book exam, based on lectures L1-L4)	DK, KL
			V	Case study site (EPFL Innovation park) visit , overview of important urban features	DK, KL
7	21.10			Fall Break (no classes)	

Exam will
be in room
MA B1 11

CONTENT:

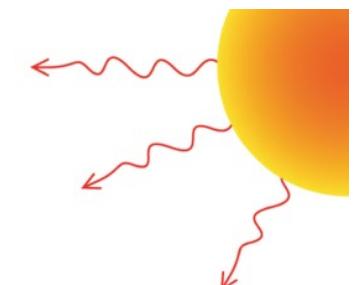
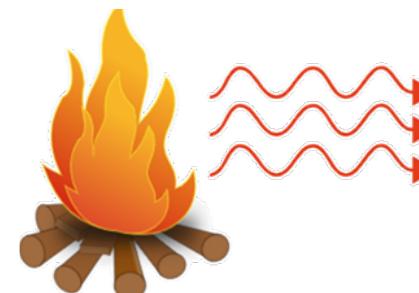
I. Convection


- Definitions
- Fluid properties
- Heat transfer coefficient
- Natural and forced convection

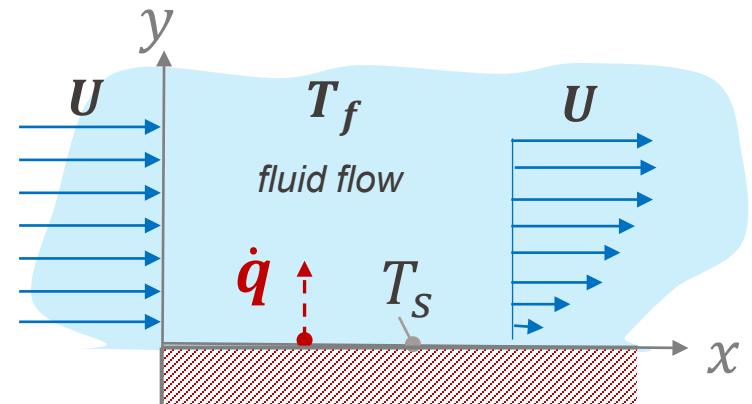
II. Combined modes of heat transfer

III. Evaporation

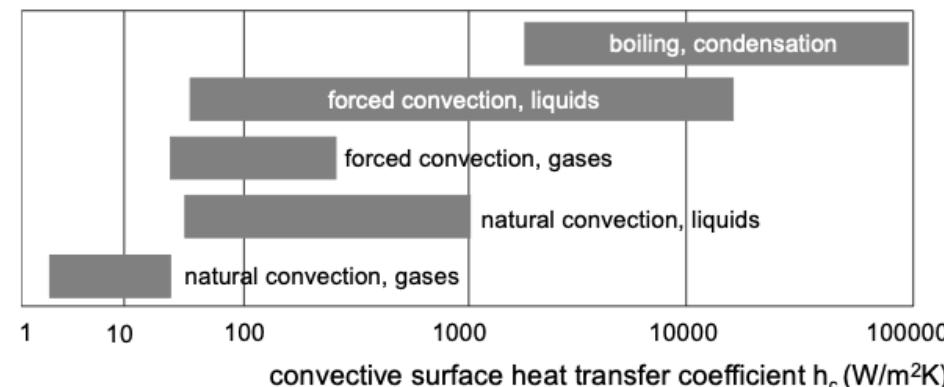
- Definitions
- Transport of water vapor
- Bowen ratio
- Methods to determine evaporation rate
(Eddy Correlation, Bulk Transfer, Energy Balance, Penman)



- **Sensible (“visible”) heat transfer** - energy transferred as heat, require the existence of a temperature difference. There are 3 modes of heat transfer.
 - **Conduction** – the transfer of thermal energy *from the more energetic particles of a substance to the adjacent less energetic ones* as a result of *interactions between particles*.
 - **Convection** – the transfer of thermal energy *between a solid surface and the adjacent liquid or gas that is in motion* (the faster the fluid motion, the greater the convection heat transfer).
 - **(Thermal) Radiation** – the energy emitted by matter in the form of *electromagnetic waves* (transfer at the speed of light).

(a) Forced convection


(b) Free convection

- **Transport of energy due to diffusion** (random collisions of molecules) and by **bulk motion of the fluid** (heat transfer from a surface to a moving fluid or between different fluids).
- The **rate of heat transfer \dot{q}** ($\frac{W}{m^2}$) from or to a **surface** is *proportional* to **heat transfer coefficient** and the **temperature difference** between the **surface temperature (T_s)** and the **temperature of the free stream fluid (T_f)**:


Newton's Law of Cooling: $\dot{q} = h_{conv} \cdot (T_s - T_f)$ (4-1)

- **Convective heat transfer coefficient h_{conv}** ($\frac{W}{m^2 \cdot K}$): the **rate of heat transfer** (in 1 sec) *between a solid surface and a fluid per unit surface area* (1 m^2) *per unit temperature difference* (1 K).
- **Convective thermal resistance R_{conv}** ($\frac{m^2 \cdot K}{W}$): the *reciprocal* of convective heat transfer coefficient, indicates ability of the medium to resist a heat flow.

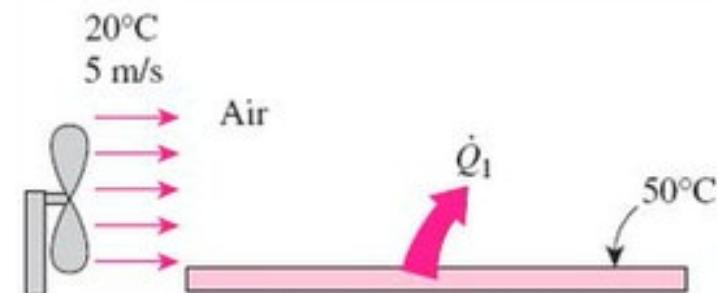
If $T_s > T_\infty$, the convection heat flux is transferred **from** the surface

Source: Medved, Building Physics, p. 22

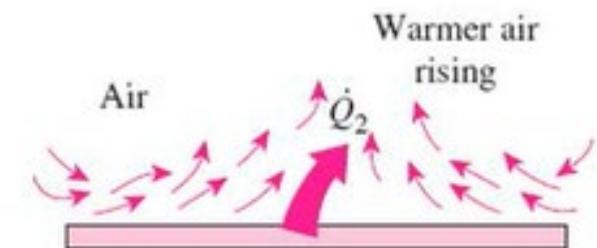
$$R_{conv} = \frac{1}{h_{conv}} \quad (4-2)$$

Convection: Heat Transfer Coefficient

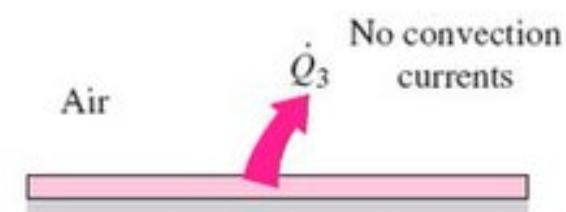
- Convective heat transfer coefficient h_{conv} depends on:
 - Fluid properties (μ, k, ρ, c_p)
 - Solid surface characteristics (its geometry and roughness)
 - Intensity of fluid flow (fluid velocity V)
 - Fluid motion (natural vs. forced)
 - Type of the fluid flow (laminar vs. turbulent)


$$h_{conv} = \frac{Nu \cdot k}{L_c} \quad (4-3a)$$

$$Nu = \frac{\dot{q}_{conv}}{\dot{q}_{cond}} = \frac{h_{conv} \cdot \Delta T}{k \cdot \Delta T / L} = \frac{h_{conv} \cdot L_c}{k} \quad (4-3b)$$


L_c - characteristic length (m)

- Nusselt number, Nu** (–): dimensionless convective heat transfer number, represents the enhancement of heat transfer through a fluid layer as a result of convection relative to conduction across the same fluid layer.


$Nu \approx 1$ - heat transfer across the layer by pure conduction, $Nu > 1$ - more effective convection

(a) Forced convection

(b) Natural convection

(c) Conduction

Reminder from L3

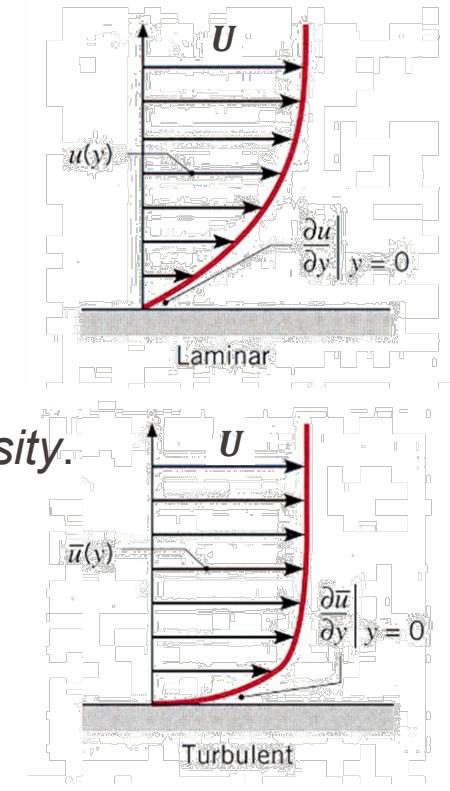
- **Density, ρ** ($\frac{kg}{m^3}$): **mass of a unit volume** of a material substance
- **Thermal conductivity, k or λ** ($\frac{W}{m \cdot K}$): **the rate of heat transfer** (in 1 sec) through **a unit of thickness** (1 m) of the material **per unit area** (1 m²) **per unit temperature difference** (1 K/m).
- **Thermal diffusivity, α** ($\frac{m^2}{s}$): **time** at which temperature *change travels* and **depth** of the layer involved *in thermal changes*, represents how fast heat **diffuses through a material**. A material with low thermal diffusivity, such as sand, doesn't store much of the thermal energy.
- **Specific heat capacity (isobaric), c_p** ($\frac{J}{kg \cdot K}$): ability of a material to store heat. Energy absorbed by 1 kg of material when its temperature increases by 1 K, highly dependent on temperature.
- **Heat capacity (isobaric), C_p** ($\frac{J}{m^3 \cdot K}$): specific heat capacity expressed in terms of the volume.

$$k = \alpha \cdot C_p \quad (3-11)$$

$$\alpha = \frac{k}{\rho \cdot c_p} \quad (3-12)$$

$$C_p = \rho \cdot c_p \quad (3-13)$$

Fluid Properties: Conductive and Convective


Fluid Type	t (°C)	ρ ($\frac{kg}{m^3}$)	Both			Conduction		Convection	
			k ($\frac{W}{m \cdot K}$)	c_p ($\frac{kJ}{kg \cdot K}$)	$\alpha \cdot 10^{-6}$ ($\frac{m^2}{s}$)	$\mu \cdot 10^{-6}$ ($\frac{N \cdot s}{m^2}$)	$\nu \cdot 10^{-6}$ ($\frac{m^2}{s}$)	Pr	
Air	-10	1.334	0.023	1.006	17.62	16.61	12.6	0.717	
	0	1.287	0.024	1.006	18.94	17.11	13.49	0.714	
	20	1.194	0.026	1.007	21.58	18.11	15.27	0.709	
	40	1.118	0.027	1.008	24.42	19.07	17.2	0.705	
	60	1.052	0.029	1.008	27.38	20.02	19.21	0.702	
Water	0	1000	0.555	4.219	0.13	1790	1.79	13.61	
	20	998	0.598	4.182	0.14	1008	1.01	7.063	
	40	992	0.627	4.178	0.15	653	0.66	4.385	
	60	983	0.651	4.19	0.16	470	0.48	3.077	
Argon	0	1.784	0.018	0.52	19.09	20.99	11.77	0.616	
Krypton	0	3.75	0.0094	0.248	10.14	23.29	6.21	0.613	
Xenon	0	5.9	0.0056	0.158	6.05	21.1	3.58	0.591	

Source: Medved, Building Physics, p. 19

- **Viscosity** is the material property which relates **the viscous stresses** in a material to **the rate of change** of a deformation (the strain rate).
- **Dynamic viscosity μ** ($\frac{N \cdot s}{m^2}$ or $\frac{kg}{m \cdot s}$): *proportionality constant* between **the vertical gradient of horizontal velocity** ($\partial u / \partial y$) and the **induced shear stress** (τ_w). It characterizes the *resistance to deformation at a given rate*.
- **Kinematic viscosity ν** ($\frac{m^2}{s}$): the ratio of the *dynamic viscosity* to the *fluid density*.

$$\tau_w = \mu \cdot \left(\frac{\partial u}{\partial y} \right)_{y=0} \quad (4-4)$$

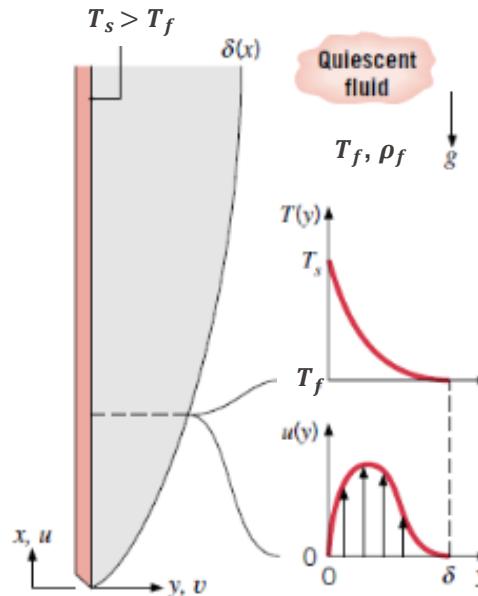
$$\nu = \frac{\mu}{\rho} \quad (4-5)$$

Material properties can be combined into dimensionless numbers:

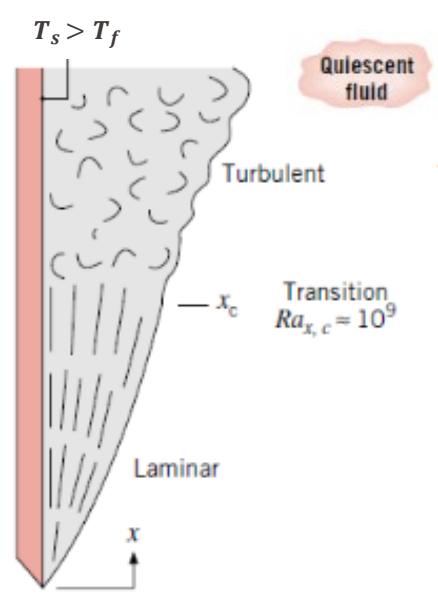
- **Prandtl number, Pr** (–): the relative thickness of the velocity and the thermal boundary layers, the ratio of **momentum diffusivity** to **thermal diffusivity** ($Pr \approx 1$ in gases, $Pr \approx 10$ for water).

$$Pr = \frac{\text{Molecular diffusivity of momentum}}{\text{Molecular diffusivity of heat}} \quad (4-6)$$

(4-6)


$$Pr = \frac{\nu}{\alpha} \quad (4-6a)$$

$$Pr = \frac{c_p \cdot \mu}{k} \quad (4-6b)$$


Convection: Natural (Free)

- **Natural or free convection:** motion of fluid resulting from a **temperature gradient** (the fluid motion is due to the *difference in density* induced by the *difference in temperature*). The driving force of natural convection is **buoyancy**.
- **Volumetric thermal expansion coefficient** β ($\frac{1}{K}$): expresses the *net buoyancy force*, the **variation of the density of a fluid with temperature at constant pressure**.

$$\beta = -\frac{1}{\rho} \cdot \left(\frac{\partial \rho}{\partial T} \right)_P \quad (4-7a) \quad \xrightarrow{\text{for ideal gas}} \quad \beta = \frac{1}{T} \quad (4-7b)$$

$$T = \frac{T_s + T_f}{2} \quad (4-8)$$

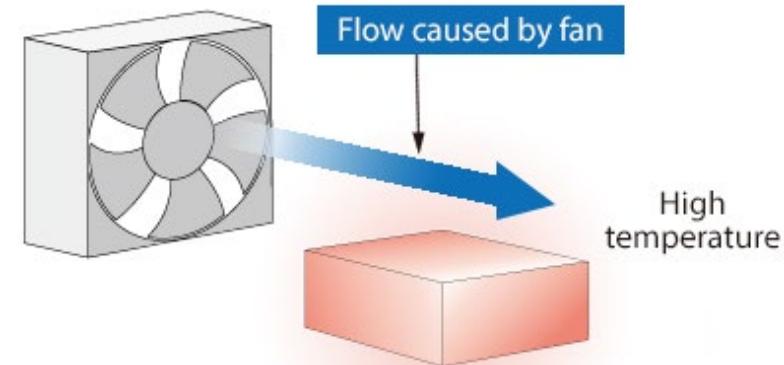
Flow regime for vertical flat plates:

- Laminar flow $Ra \leq 10^9$
- Turbulent flow $Ra > 10^9$

- **Grashof number Gr** (-): the ratio of the **buoyancy force** to the **viscous force** acting on the fluid, governs the flow regime in natural convection.
- **Rayleigh number Ra** (-): the product of Gr and Pr numbers, the ratio of *buoyancy force and thermal and momentum diffusivities*.

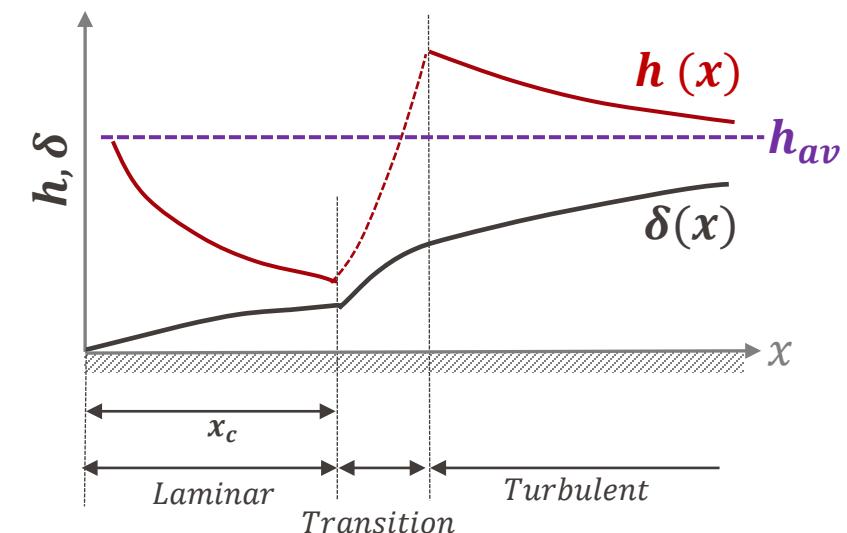
$$Gr = \frac{g \cdot \beta \cdot (T_s - T_f) \cdot L_c^3}{\nu^2} \quad (4-9)$$

for $T_s > T_f$


$$Ra = Gr \cdot Pr \quad (4-10)$$

- **Forced convection:** fluid motion *forced* by an **external source** (i.e., wind, fan).
- **Reynolds number Re** (-): the ratio of **inertial forces** to **viscous forces** within a fluid.
 - At small Re , the viscous forces are large enough to suppress random fluctuations → **laminar flow**
 - At large Re , the inertial forces ($\sim \rho, V$) are large relative to viscous forces, thus, the viscous forces *can not prevent* the random and rapid fluctuations of the fluid → **turbulent flow**

$$Re = \frac{\text{Inertia forces}}{\text{Viscous forces}} \quad (4-11)$$

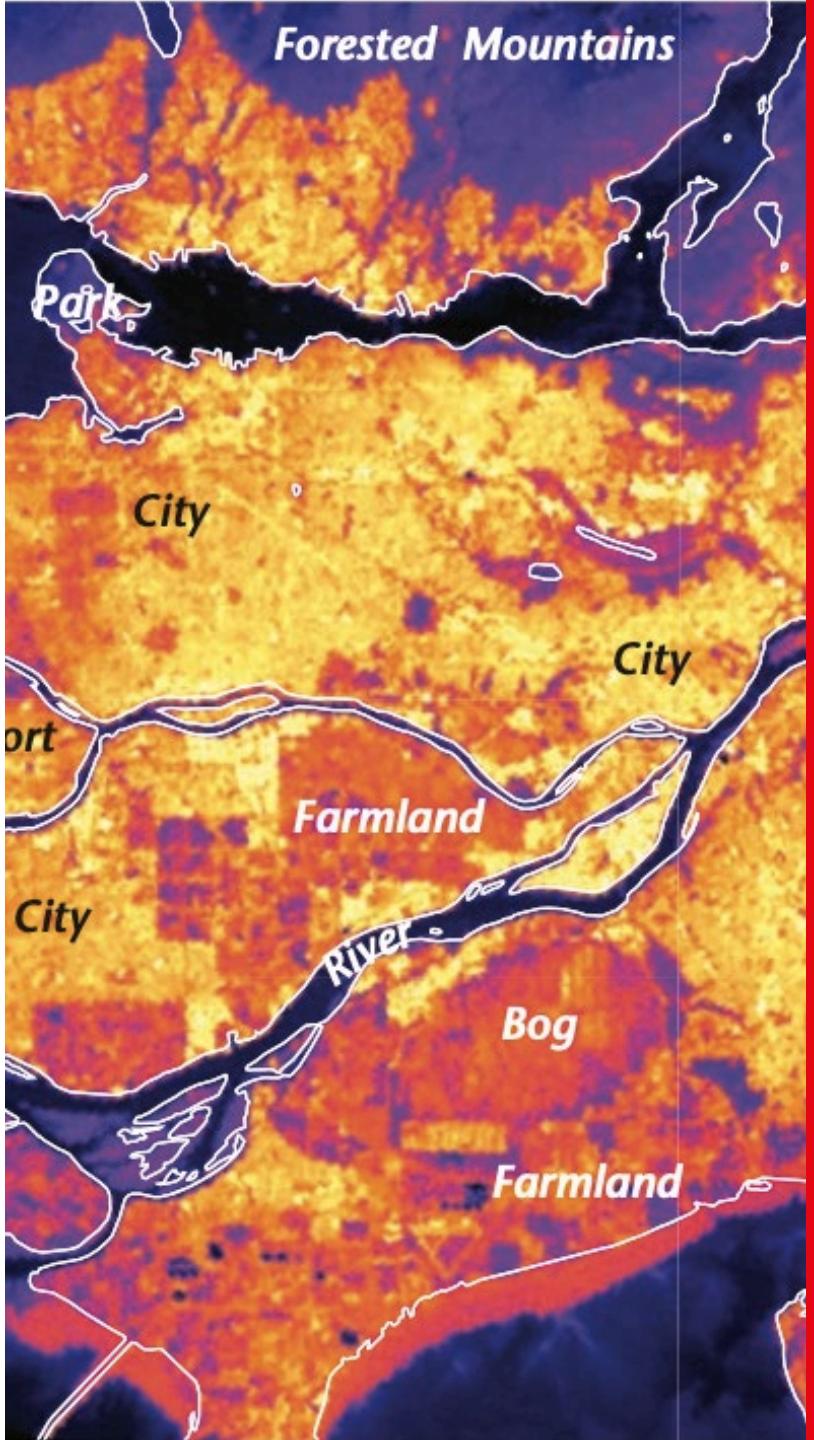

$$Re = \frac{U \cdot L_c}{\nu} \quad (4-11a)$$

$$Re = \frac{\rho \cdot U \cdot L_c}{\mu} \quad (4-11b)$$

Flow regime for horizontal flat plates:

- Laminar flow $Re \leq 5 \cdot 10^5$
- Turbulent flow $Re > 5 \cdot 10^5$

- **Natural convection:**


$$Nu = C \cdot Ra^n \quad (4-12)$$

- **Forced convection:**

$$Nu = C \cdot Re^m \cdot Pr^n \quad (4-13)$$

The ***Nu*** number (dimensionless heat transfer coefficient) is typically determined experimentally or using *numerical methods*.

Mode	Surface Type	Flow Type	C	m	n	Validity Range	Characteristic dimension L_c
Free	Vertical plate	Laminar	0.59	-	1/4	$Ra_H < 10^9$	Plate height H
		Turbulent	0.10	-	1/3	$Ra_H > 10^9$	Plate height H
	Upper surface of a heated horiz. plate / lower surface of a cooled horiz. plate	Laminar	0.54	-	1/4	$Ra_L: 10^4 - 10^7$	Area/Perimeter
		Transition	0.15	-	1/3	$Ra_L: 10^7 - 10^{11}$	Area/Perimeter
	Lower surface of a heated horiz. plate / upper surface of a cooled horiz. plate	All	0.27	-	1/4	$Ra_L: 10^5 - 10^{11}$	Area/Perimeter
Forced	Horizontal flat plate	Laminar	0.664	0.5	1/3	$Re_L < 5 \cdot 10^5$	Plate length L
		Turbulent	0.037	0.8	1/3	$Re_L: 5 \cdot 10^5 - 10^7$ $Pr: 0.6 - 60$	Plate length L

CONTENT:

I. Convection

- Definitions
- Fluid properties
- Heat transfer coefficient
- Natural and forced convection

II. Combined modes of heat transfer

III. Evaporation

- Definitions
- Transport of water vapor
- Bowen ratio
- Methods to determine evaporation rate
(Eddy Correlation, Bulk Transfer, Energy Balance, Penman)

- **Heat flux \dot{q}** ($\frac{W}{m^2}$) formulation:

$$\dot{q} = U_{tot} \cdot \Delta T = \frac{1}{R_{tot}} \cdot \Delta T \quad (3-8)$$

Thermal transmittance,
Overall heat transfer coefficient,
[W/m²K]

$$U = \frac{1}{R} \quad (3-9)$$

Temperature
gradient, [K] *

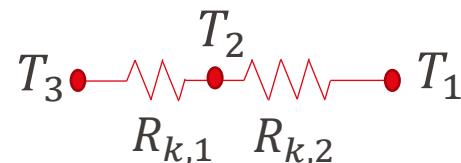
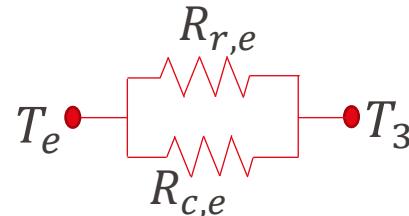
- **Thermal Transmittance **U**** (U-value, $\frac{W}{m^2 \cdot K}$): heat transfer coefficient, an **indicator of the efficiency to promote** heat conduction by the material.
- **Thermal Resistance **R**** (R-value, $\frac{m^2 \cdot K}{W}$): the capacity of a material to **resist** heat flow.

- **Conduction:** $\dot{q}_{cond} = k \frac{\Delta T}{L} \quad (3-5b)$

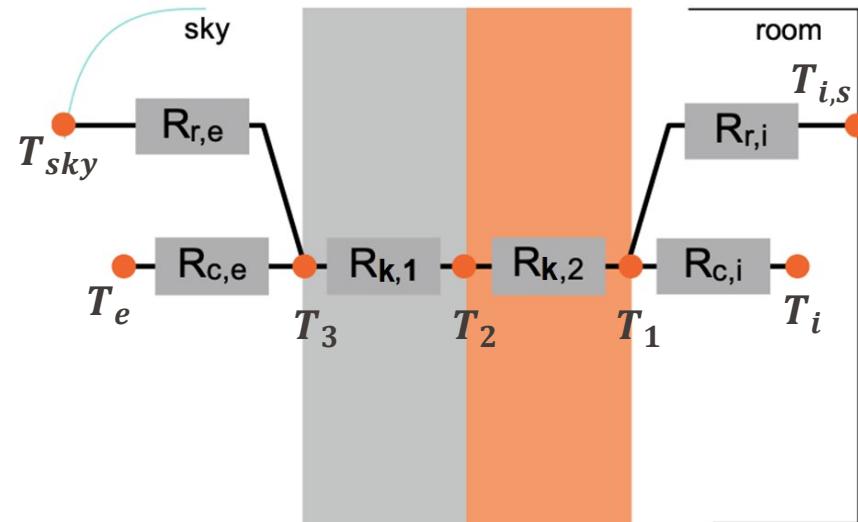
$$\Rightarrow R_{cond,i} = \frac{L_i}{k_i} \quad (3-10)$$

- **Convection:** $\dot{q}_{conv} = h_{conv} (T_s - T_f) \quad (4-1)$

$$\Rightarrow R_{conv} = \frac{1}{h_{conv}} \quad (4-2)$$

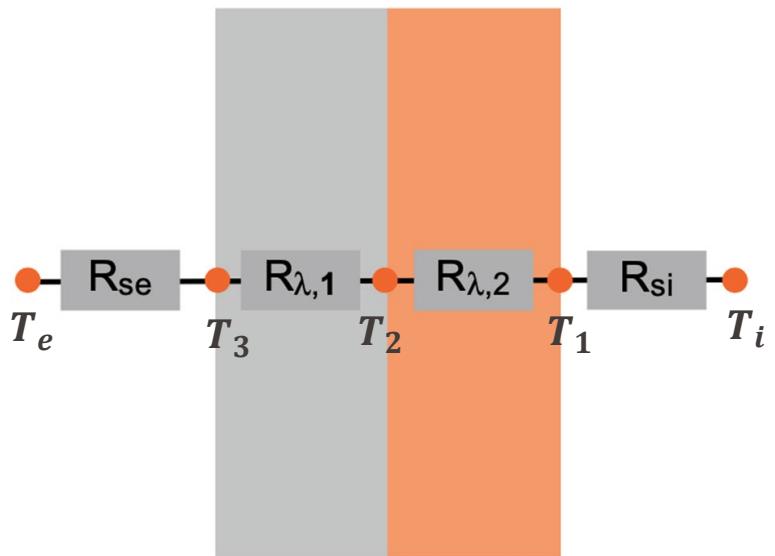


- **Radiation:** $\dot{q}_{rad} = h_{rad} (T_s - T_\infty) \quad (3-18b)$

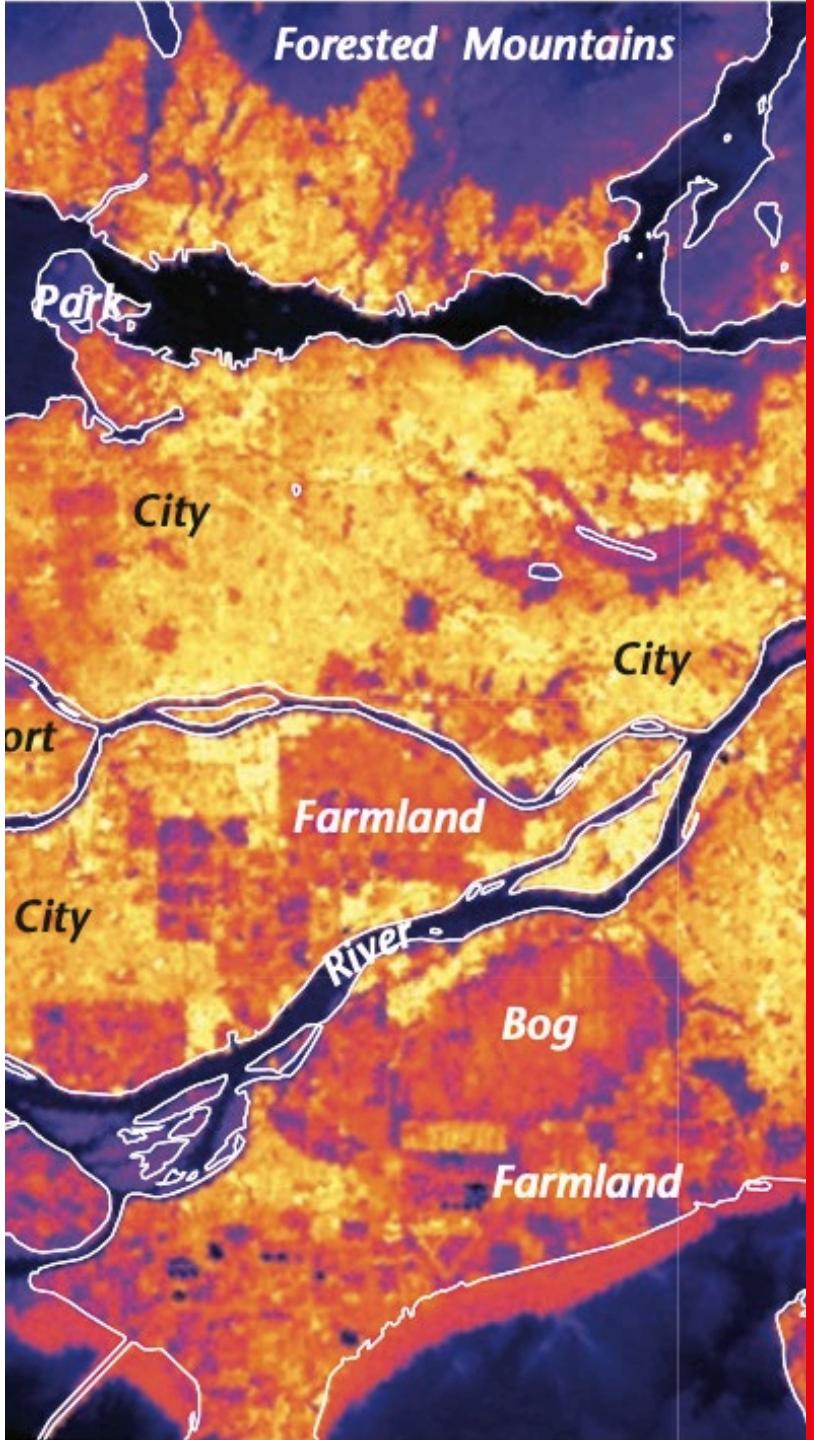
$$\Rightarrow R_{rad} = \frac{1}{h_{rad}} \quad (3-23)$$


1-D formulations

Combined modes: Thermal Resistance

- Using the electrical circuit analogy, heat transfer problems involving multiple modes of heat transfer can be analyzed using the **network of thermal resistances** forming a thermal circuit. Considering Eqn. (3-6)-(3-7) from Lect. 3:




$$R_{tot} = \underbrace{\frac{1}{\frac{1}{R_{r,e}} + \frac{1}{R_{c,e}}}}_{R_{se}} + R_{k,1} + R_{k,2} + \underbrace{\frac{1}{\frac{1}{R_{r,i}} + \frac{1}{R_{c,i}}}}_{R_{si}} \quad (4-14)$$

- For buildings, the convective and radiative resistances of the outer and inner wall are *combined* in a single thermal resistance R_{se} or R_{si} (referred as a **surface thermal resistance**). For a wall with j number of solid layers:

$$U = \frac{1}{R_{tot}} = \frac{1}{R_{si} + \sum_{j=1}^n \frac{L_j}{k_j} + R_{se}} \quad (4-15)$$

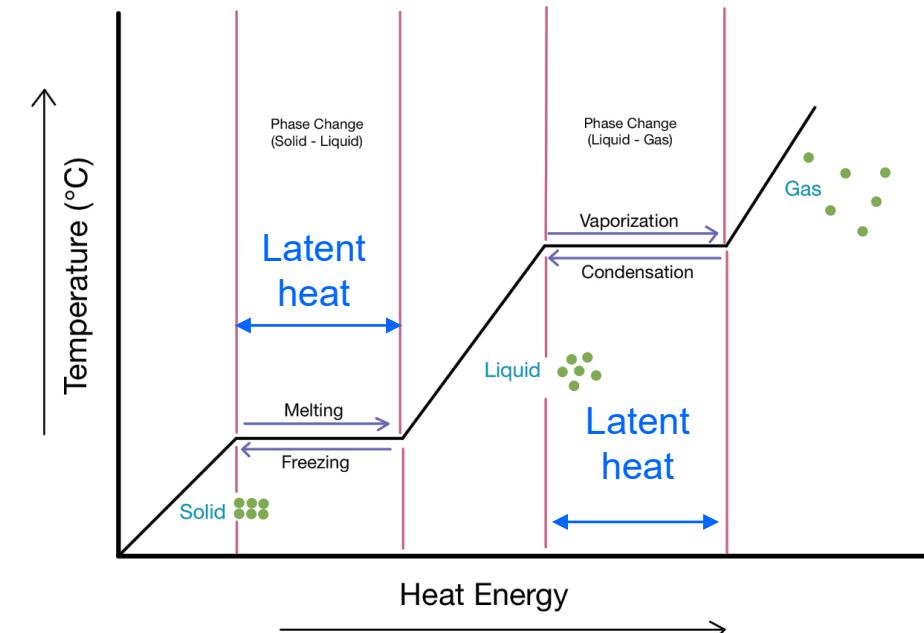
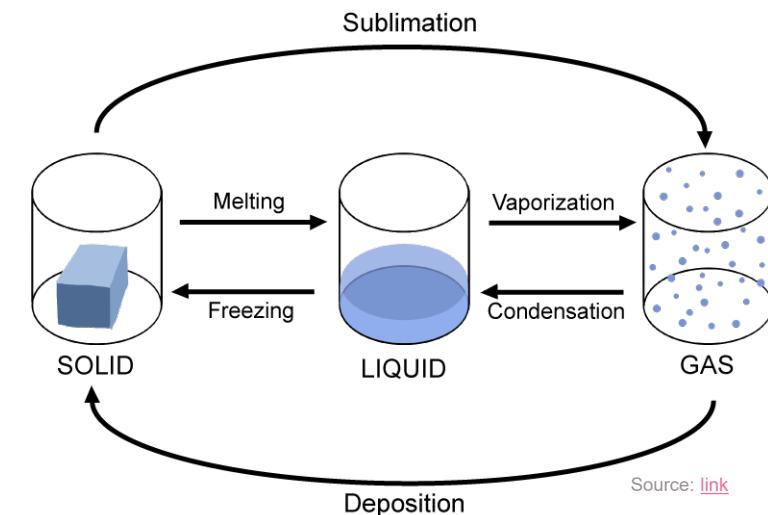
CONTENT:

I. Convection

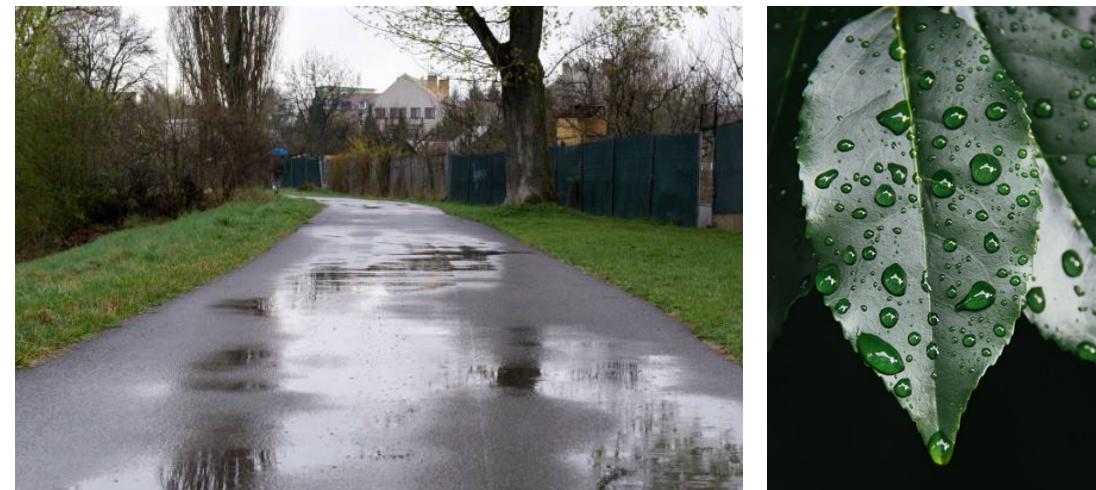
- Definitions
- Fluid properties
- Heat transfer coefficient
- Natural and forced convection

II. Combined modes of heat transfer

III. Evaporation



- Definitions
- Transport of water vapor
- Bowen ratio
- Methods to determine evaporation rate
(Eddy Correlation, Bulk Transfer, Energy Balance, Penman)

- The urban water availability is of interest for its capacity to **evaporate**. Only *liquid* water evaporates. Heat can be used as **latent heat** instead of sensible heat (temperature of water does not increase, only enthalpy changes)
- During evaporation, the energy is stored as latent heat in the state of gaseous water and will be released when water condensate. Condensation is also named **dewfall**.
- Latent heat flux density Q_E** ($\frac{W}{m^2}$): energy flux that is used to evaporate the water mass.


$$Q_E = L_v \cdot E \quad (1-6)$$

L_v - **latent heat of vaporization** ($2.464 \frac{MJ}{kg}$ at $15^\circ C$)

E - **mass flux density of water** in $\frac{kg}{m^2 \cdot s}$.

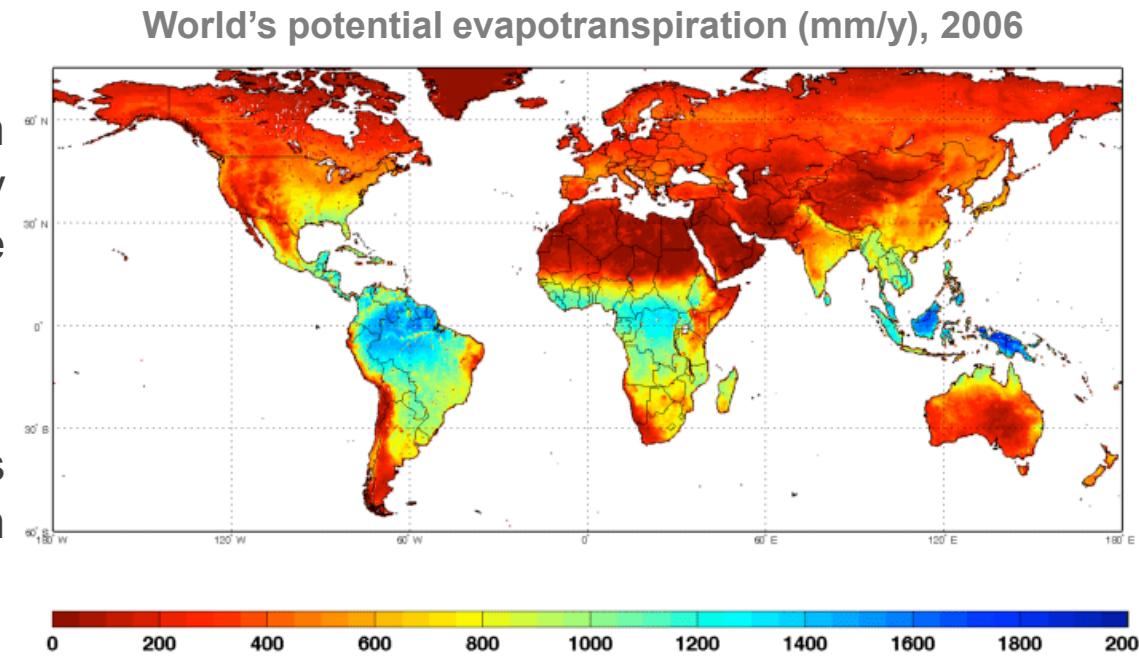
- **Evaporation:** *phenomenon* by which a substance is converted from the **liquid state** into **vapor state** (the reverse process of evaporation is **condensation**).
- **Atmospheric evaporation** takes place from:
 - Free water surface
 - Moist surfaces (soil, artificial surfaces)
 - Leaves of living plants and trees
- **The amount of water evaporated** depends on:
 - the **supply of energy to release latent heat**
 - the physical process of **transport of vapor away from any interface**
 - ...and the **supply of water**.
- Vapor is transferred almost the same way as *heat* and *momentum*, by *advection* and *pressure gradients*.

Images from [weblink](#)

Evaporation: Definitions

Note: $1 \text{ kg}/(\text{m}^2 \cdot \text{s}) = 1 \text{ mm/s}$

- **Potential evaporation E_{pot} , $\text{kg}/(\text{m}^2 \cdot \text{s})$:**


the maximum rate of evaporation for a given surface conditions with no water supply limitation. Free evaporation depends on the prevailing meteorological conditions

- **Actual evaporation E , $\text{kg}/(\text{m}^2 \cdot \text{s})$:**

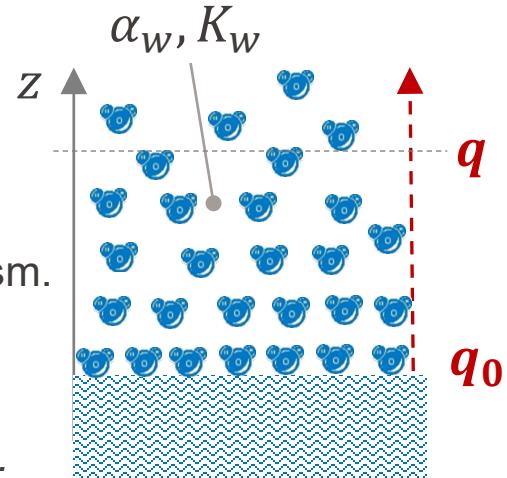
always less than potential evaporation. It is most often less than potential evaporation because the surface may not be saturated

$$E < E_{\text{pot}} \quad (4-16)$$

- If a surface is not saturated with water, **the rate of evaporation depends on its moisture content**
- **Potential evaporation** for soil, vegetation or an artificial surface is generally *less* than the *free water surface evaporation* under *the same weather conditions*, especially in humid regions.

Crop	Location	Season	Actual evaporation (E, mm)	Rainfall (P, mm)	Potential evaporation (mm)	E – P (mm)
Wheat	UK	May–July	188	68	270	120
Wheat	UK	June–August	230	134	280	96
Barley	UK	May–July	220	125	270	95
Barley	Syria	March–May	154	93	360	61
Millet	India	November–February	87	30	480	57
Barley	Syria	March–May	103	39	360	64
Peanut	India	December–February	102	0	400	102

Source: Mason, Introduction to environmental physics, p. 327


Evaporation rate (E): Transport of Water Vapor

- The expression of the **evaporation rate E** ($\frac{kg}{m^2 s}$) due to the **transport of water vapor over a surface** depends whether the **flow** is **laminar** or **turbulent**.
- Laminar flow: Fick's law** for the evaporation rate at a *horizontal surface*:

$$E = -\rho \cdot \alpha_w \cdot \frac{\partial q}{\partial z} \quad (4-17)$$

α_w (m^2/s) - molecular diffusivity of water vapor
 q (kg/kg) - specific humidity (see L2, slide 24)

- Only valid when molecular exchange is the primary (perhaps the only) transport mechanism.
- Fick's law is not applicable for *urban areas* because the flow in the atmosphere at the *surface layer* at local scale is *always turbulent*.

- Turbulent flow:** the evaporation rate at a *horizontal surface* is given by **the eddy correlation method**:

1 D, steady state

$$E = -\rho \cdot K_w \cdot \frac{\partial q}{\partial z} \quad (4-18)$$

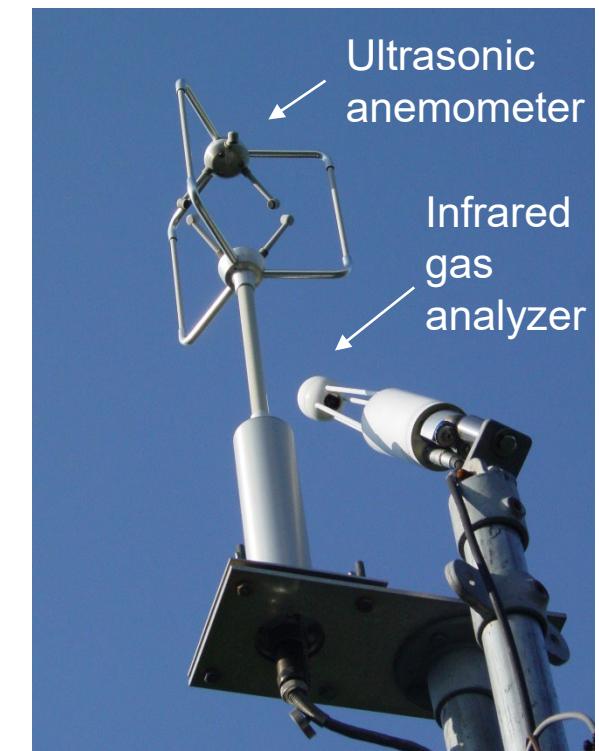
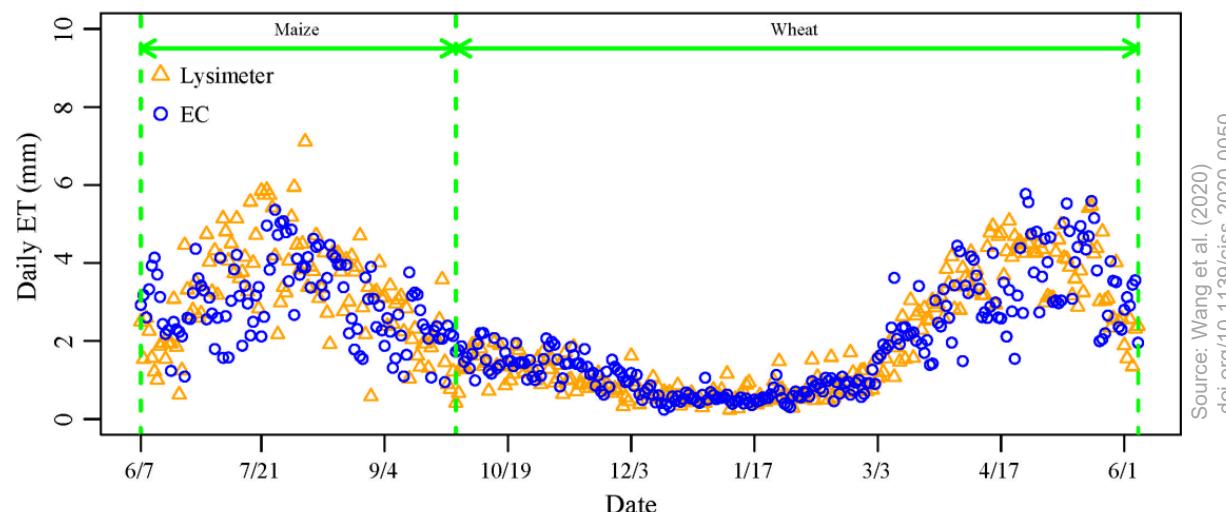
K_w (m^2/s) - eddy diffusivity

- Turbulent fluxes arise due to *the existence of a gradient of a related property in the air and turbulent motion* set off either by *mechanical or thermal production*. The greater the gradient and the more efficient the mixing, the stronger the flux density.
- The intensity of turbulent mixing depends on the *surface roughness, wind shear or friction velocity, and thermal stratification*. The evaporation rate also depends on the above factors, plus *the average specific humidity gradient*.

- Many different numerical methods have been developed to assess evaporation rates:

1. **Eddy correlation** or **covariance method**: expresses the evaporation heat flux as a function of *the humidity gradient*.
2. **Bulk transfer approach**: expresses the evaporation rate as a *linear* function of *specific humidity* with *the bulk coefficient*.
3. **Energy balance** or **Bowen ratio method**: estimates the evaporation with the expressions of the *energy balance* and *the Bowen ratio*.
4. **Penman approach**: a synthesis of *the energy balance* and *the bulk transfer method*.
5. **Gradient or Aerodynamic method**: under neutral stability conditions, both the wind speed and specific humidity follow logarithmic profile laws.
6. **Profile method**: evaporative heat flux profile over urban areas *is known* and expressed as a function of *the altitude*.

- The **energy balance method** assesses evaporation *due to an external supply of energy converted to latent heat E_S* while **the eddy correlation method, the bulk transfer approach** assesses the evaporation *due to the transport of water vapor E_T* .
- **The Penman approach** is *the most used* and has numerous applications in soil and vegetation evaporation assessment.
- The **gradient and profile methods** give *empirical expressions* of the evaporation function of the altitude $E = f(z)$.



EPFL Evaporation rate (E): Eddy Correlation Method

22

- The **eddy correlation method** is used to *directly* measure the local water vapor flux E ($\frac{kg}{m^2 s}$) over a *homogeneous* or *non-homogeneous* surface.
- It requires** measurements fluctuations of **vertical velocity w** and **specific humidity q** , and calculation of their **covariance $\overline{w \cdot q}$** .
- Difficult* to obtain input parameters w and q , as the fast-responding instruments are required, adequately calibrated and installed with care.
- The method is **the most accurate one**, used to *calibrate* other methods such as **aerodynamic**, **Bowen** and **Penman** methods.

$$E = \rho \cdot \overline{w \cdot q} \quad (4-19)$$

w (m/s) - vertical velocity
 q (kg/kg) - specific humidity

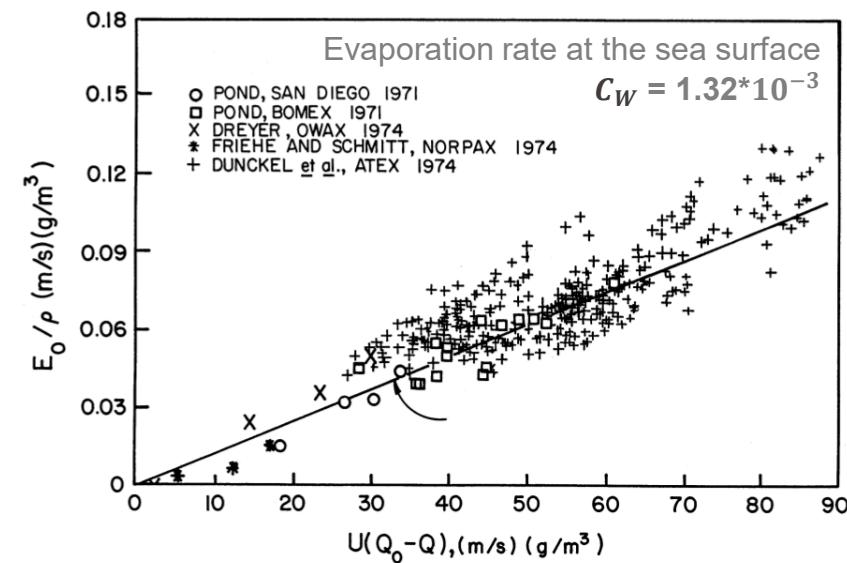
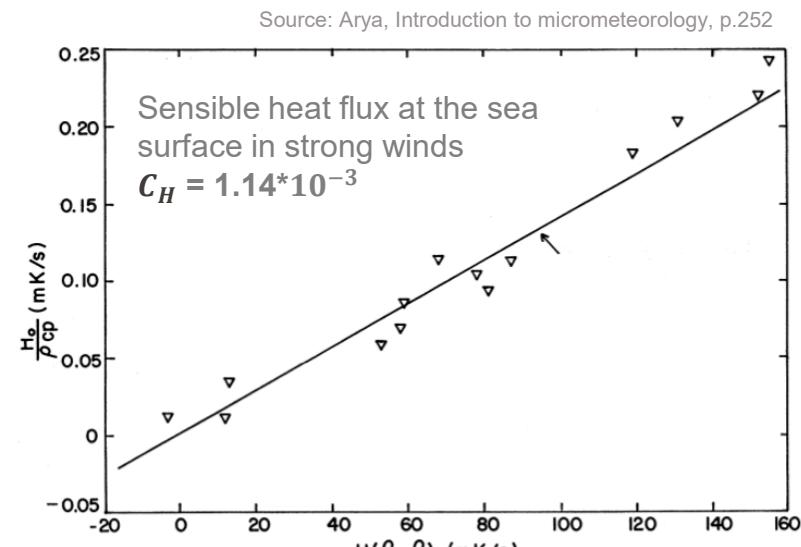
Source: https://en.wikipedia.org/wiki/Eddy_covariance

Evaporation rate: Bulk Transfer Method

- **A bulk transfer law** is the relationship between *surface kinematic flux of a meteorological variable* to the product of *wind speed times the difference of that variable between the surface and some reference height*.
- The **bulk transfer coefficient C_W** is an empirical constant of proportionality in a bulk law transfer.
- The **bulk transfer method** expresses the evaporation rate as:

$$E = \rho \cdot C_W \cdot U \cdot (q_0 - q_r) \quad (4-20a)$$

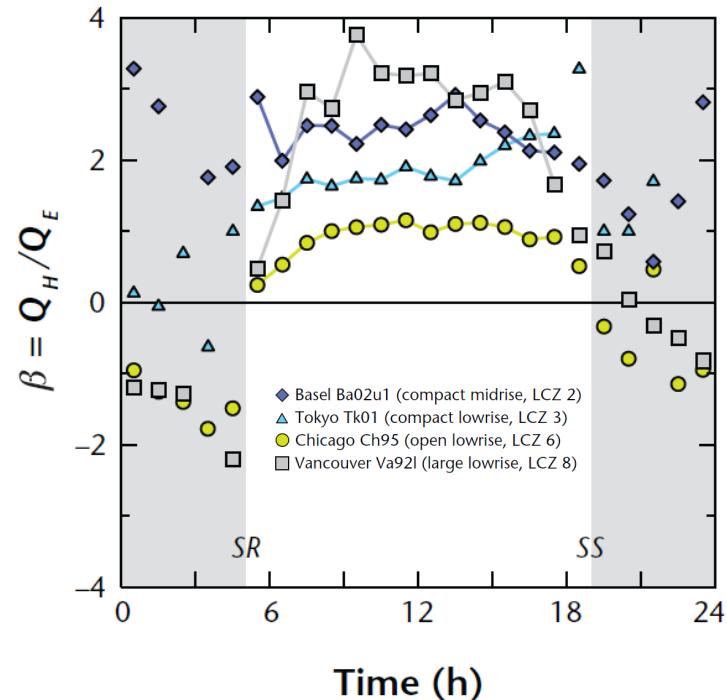
Can be simplified assuming that *specific humidity very close to the surface equals the one at the surface* $q_0 = q_s$:



$$E = \rho \cdot C_W \cdot U \cdot (q_s - q_r) \quad (4-20b)$$

C_W (-) - bulk transfer coefficient for water vapor, ρ (kg/m^3) – air density, U ($\frac{\text{m}}{\text{s}}$) – air speed at reference height, Subscripts: “0” (very close to the surface), “s” (at the surface, saturated), “r” (reference height above the surface)

- The formulation is similar to the sensible heat flux, by Reynold's analogy between *heat* and *mass* transfer:

$$Q_H = \rho \cdot c_p \cdot C_H \cdot U \cdot (T_s - T_r) \quad (4-21)$$


C_H - bulk heat transfer coefficient, $C_W = C_H$ in Reynold's analogy between water vapor and heat transfers

Evaporation: Bowen Ratio

- **Bowen ratio B** (-): the ratio of sensible heat to latent heat flux.

$$B = \frac{Q_H}{Q_E} \quad (4-22)$$

Typical daytime values of Bowen ratio for **natural and urban** systems
(in bold – mean values, the range depends on moisture availability)

Surface description	LCZ	Bowen ratio B
Tropical oceans	G	0.1
Lakes	G	0.2 – 1
Crops	D	0.3 0.1 – 1
Urban 35 – 75% greenspace	6, 9	1 0.5 – 2.5
Urban 25 – 40% greenspace	3, 5	2 1.5 – 3
Urban < 20% greenspace	2, 3, 8	4 3 – 8
Semi-arid lands	C, F	2 – 6
Sandy desert	F	≈10

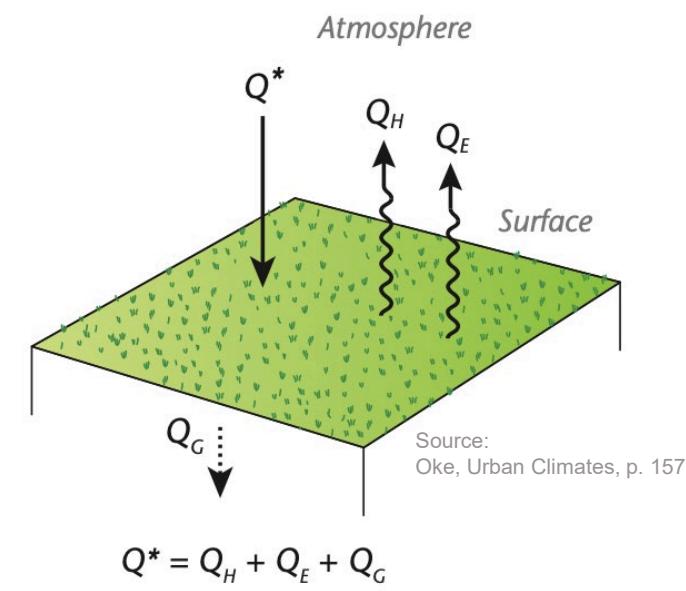
Source: Oke, Urban climates, p. 184

- The Bowen ratio can be estimated from the gradient transport relations for sensible and latent heat (with the assumption that the eddy exchange coefficients $K_h = K_w$ are equal):

$$B = \frac{c_p}{L_v} \cdot \frac{\frac{\partial T}{\partial z}}{\frac{\partial q}{\partial z}} = \frac{c_p}{L_v} \cdot \frac{\Delta T}{\Delta q} \approx \frac{c_p \cdot p_a}{0.622 \cdot L_v} \cdot \frac{\Delta T}{\Delta p_v} = \gamma \cdot \frac{\Delta T}{\Delta p_v} \quad (4-23)$$

$$\gamma = \frac{c_p \cdot p_a}{0.622 \cdot L_n} \quad (4-24)$$

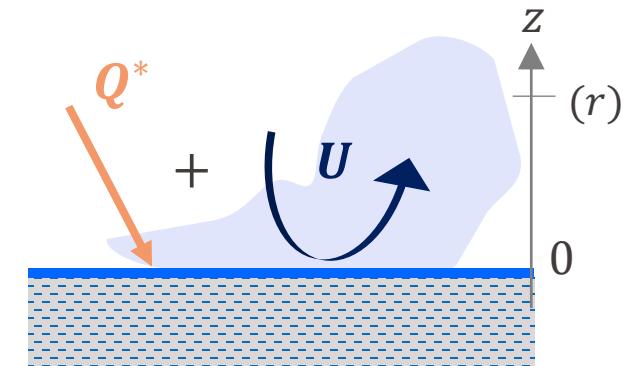
p_v (Pa) - partial pressure of water vapor, L_v ($\frac{J}{kg}$) - latent heat of vaporization, γ (kPa/K) - psychrometric constant.


The Bowen ratio can be estimated by measuring the differences in temperature ΔT and in specific humidity Δq at two levels in the surface layer (e.g. with a dry and wet-bulb thermometer).

- **Surface Energy Balance:** knowing the Bowen ratio, the radiative (Q^*) and the ground heat flux (Q_G), the **latent** (Q_E) and **sensible heat flux** (Q_H) can be computed:

$$Q^* = Q_H + Q_E + Q_G \quad (1-2)$$

$$Q_E = \frac{Q^* - Q_G}{1 + R} \quad (4-25)$$


$$Q_H = B \cdot \frac{Q^* - Q_G}{1 + B} \quad (4-26)$$

Evaporation rate (E): Penman method

- Assuming water availability, the **driving forces** of evaporation are **the supply of energy** (mainly from a radiative heat flux) and **the transport of mass away from the interface where evaporation happens** (i.e., the convection/advection of water vapor).

$$E_{pot} = \underbrace{\frac{m}{m + \gamma} \cdot \left(\frac{Q^* - Q_G}{L_v} \right)}_{\text{Radiation term } E_S} + \underbrace{\frac{\gamma}{m + \gamma} \cdot E_a}_{\text{Aerodynamic term } E_T} \quad (4-27)$$

- E_a ($kg/m^2 \cdot s$) - drying power of air:

$$(4-20b) \quad E_a = \rho \cdot C_W \cdot U \cdot (q_s - q_r)$$

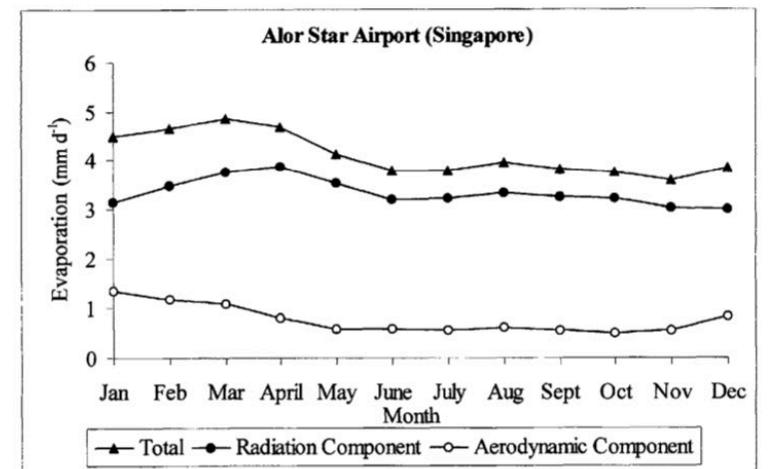
q_s (kg/kg) - specific humidity at the reference height (r) assuming saturated air at T_r ,
 q_r (kg/kg) - actual specific humidity at the reference height (r),
 C_W (-) - bulk transfer coefficient for water vapor, U ($\frac{m}{s}$) - air speed at reference height

- m (kPa/K) - slope of the saturated vapor pressure versus temperature curve at $(T_r + T_0)/2$:

$$m = \frac{p_{v,0} - p_{v,sat_r}}{T_0 - T_r} \cong \frac{dp_{v,sat}}{dT} \quad (4-28a)$$

$$m = 4098 \cdot \frac{0.6108 \cdot e^{\frac{17.27 \cdot t_r}{t_r + 237.3}}}{(t_r + 237.3)^2} \quad (4-28b)$$

- γ (kPa/K) - psychrometric constant:


$$\gamma = \frac{c_p \cdot p_a}{0.622 \cdot L_v} \quad (4-24)$$

Evaporation rate (E): Penman method

- It is *the most widely used method* to calculate **daily average potential evaporation**.
- The **Penman** method is a *combination of the energy balance and the bulk transfer methods*:
 - The radiation term E_S comes** from the **energy balance** method. The ground heat flux is *neglected* for the assessment of *daily evaporation* (see Lect. L6).
 - The aerodynamic term E_T comes** from the **bulk transfer** method. It depends on the temperature, humidity of the air and on its wind speed.
 - The balance between both terms** depends on the **climatic conditions**:
 - For hot dry air*, the aerodynamic term is dominant
 - For cold and humid air*, evaporation is less and there is more balance between both terms
- The **Bowen ratio** associated with the Penman equation:

$$B = \frac{\gamma}{m} \left(\frac{E_{pot} - E_a}{E_{pot}} \right) \quad (4-29)$$

Monthly evaporation rates for various locations:

Source: Mason, Introduction to environmental physics, p. 355

**Thank you
for your attention**

**Assist. Prof.
Dolaana Khovalyg
dolaana.khovalyg@epfl.ch**